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Section 1

Gaussian distribution
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Univariate Gaussian distribution

It has several good properties: easy computations, central limit
theorem, . . . It will be the central tool of the gaussian processes.

Knowing the parameters for the mean µ and the variance σ2, the
point density function is given by

p(f |µ, σ2) =
1

σ
√

2π
e−( f−µ

σ )
2

(1)
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Multivariate Gaussian distribution

Let f be multivariate, i.e. f = (f1, . . . , fn)T , we can extend the notion
of gaussian distribution.

Knowing the vector of means µ and the covariance matrix Σ the
point density function is given by:

p(f|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(f − µ)TΣ−1(f − µ)

)
(2)

Note: Σ must be a (semi)definite positive matrix.

Some nice properties of the multivariate gaussian distribution

The marginals are also gaussian distributed, i.e, p(fi ),p(fi , fj), . . . are
gaussian.

The conditional distributions are also gaussian distributed, i.e.
p(fi |fj),p(fi , fj |fk),p(fi |fj , fk), . . . are gaussian.

5 / 44



Example of multivariate gaussian distribution in R2

f ∼ N (µ,Σ). The mean in all examples is µ = (0, 0)T while the
covariance matrix changes:(

1 0
0 1

) (
1 0
0 0.2

) (
1 0.95

0.95 1

)
(a) (b) (c)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(c)

Figure: 1k samples from multivariate gaussian distributions.
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Example of multivariate gaussian distribution in R3

The 3-dimensional multivariate gaussian distribution is more difficult
to observe. So we are going to plot the samples in an axis.
f = (f1, f2, f3) ∼ N (µ,Σ). With mean µ = (0, 0, 0)T and covariance
matrix:  1 0.1 0.9
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0.9 0.1 1
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Example of multivariate gaussian distribution in R3

The 3-dimensional multivariate gaussian distribution is more difficult
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Example of multivariate gaussian distribution in R3

The 3-dimensional multivariate gaussian distribution is more difficult
to observe. So we are going to plot the samples in an axis.
f = (f1, f2, f3) ∼ N (µ,Σ). With mean µ = (0, 0, 0)T and covariance
matrix:  1 0.1 0.9
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Example of multivariate gaussian distribution in R3
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Example of multivariate gaussian distribution in R3
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Section 2

Gaussian Processes
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Gaussian Process definition

Definition

A Gaussian Process is a collection of random variables such that every
finite collection of those random variables has a multivariate normal
distribution. A Gaussian process is fully specified by a mean function
µ(·) and kernel (covariance) function k(·, ·)

We say that
f ∼ GP (m(·), k(·, ·)) .

So f = {f (x) : x ∈ X} and for every finite combination of indexes
X = x1, . . . , xn ⇒ f (x1) . . . , f (xn) ∼ N (m(X), k(X,X)).

When the set of indexes X is finite, it is a multivariate gaussian
distribution. But it is interesting the case of X being infinite, e.g.,
one continue subset of Rd .

We can also see the gaussian process as a distribution over functions.
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Gaussian Process example

Let X = [0, 1] be the space of indexes and f ∼ GP((m(·), k(·, ·)) . We
define the following mean and kernel (covariance) functions:

m(x) = 0, k(x, x′) = exp
(
||x− x′||2

)
. (3)

If we choose any finite set of indexes we will obtain a multivariate gaussian
distribution, e.g., we have the following sample X = {0.1, 0.2, 0.8}.
The resulting gaussian distribution is f(X) ∼ N (µ,Σ):

µ = 0, Σ =

 1 0.9900 0.6126
0.9900 1 0.6976
0.6126 0.6976 1

 (4)
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Gaussian Process example

We can take several sample from this normal:
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Gaussian Process example

We can also increase the number of indexes used leading to functions:
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We are sampling functions and all of them seem to have similar properties.
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How to define a Gaussian Process?

As it is said before a GP is completely defined by its mean and kernel
(covariance) functions.

Usually, the mean function is fixed to zero: m(x) = 0 without losing
generality.

The main issue will be how to define the kernel function k(·, ·). This
kernel function will define the desirable properties of the functions.
Notice: k(·, ·) must define a semidefinite positive matrix.
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Example of kernel functions: RBF

The Radial Basis Function (RBF) is the most used because it has a great
power of represention.

Radial Basis Function kernel (RBF)

k(x, x′) = σ2 exp

(
−||x− x′||2

2l2

)
It has the hyperparameters l and σ2 that control the properties of the
function.
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Example of kernel functions: RBF
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Example of kernel functions: RBF

It is called a stationary kernel because it depends of the distance of
two points, i.e., ||x ′ − x ||.
It is clear that σ controls the amplitude of the values of f (look at
the values of the y-axis!!).

As we could see the RBF kernel imposes smoothness per se. We can
control the amount of smoothness tuning the parameter l . The higher
the parameter the higher the smoothness.

This property of smoothness is desirable in many scenarios, in
addition, it is very flexible and it has a great power of
representation which leads to be the most used.
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Example of kernel functions: Matern

The Matern functions are a family of kernels:

Matern12

k(x , x ′) = σ2 exp

(
−||x− x′||

2l

)
Matern32

k(x, x′) = σ2
(

1 +
√

3
||x− x′||

2l

)
exp

(
−
√

3
||x− x′||

2l

)
Matern52

k(x, x′) = σ2
(

1 +
√

5
||x− x′||

2l
+

5

3

||x− x′||2

2l2

)
exp

(
−
√

5
||x− x′||

2l

)
It is also a stationary kernel and it is controlled by the variance σ2 and
lengthscale l parameters.
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Example of kernel functions: Matern

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

1

2

3

4
Matern 12 kernel

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

3
Matern 32 kernel

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

3
Matern 52 kernel

(c)

23 / 44



Example of kernel functions: Periodic

The periodic kernel is used for periodic data:

Periodic

k(x , x ′) = σ2 exp

(
−sin(π‖ x − x ′ ‖2 /p)

l2

)
It is also a stationary kernel and it has three parameters: variance σ2 for
the amplitude, lengthscale l for the smoothness and phase p for the
periodicity parameters.
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Example of kernel functions: Linear

The linear kernel is used for linear data:

Linear

k(x , x ′) = σ2x · x ′

It has the parameter σ2 which controls the slope of the lines.
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Example of kernel functions: White noise

The white noise kernel is used for gaussian noisy data:

White noise

k(x , x ′) = σ2δxx ′

where δxx ′ is the kronecker delta.

All the points are independent and the σ2 parameter control the amplitude
of this noise.

0.0 0.2 0.4 0.6 0.8 1.0
−4

−3

−2

−1

0

1

2

3

4

White noise kernel

26 / 44



Combining kernels: Sum

We can also combine kernels by summing them. Look that it also defines
a semidefinite positive matrix!

k(x , x ′) = k1(x , x ′) + k2(x , x ′)

It acts like a OR operator if one of them is high it will high:

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
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−1

0

1
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Combining kernels: Sum

We can also combine kernels by summing them. Look that it also defines
a semidefinite positive matrix!

k(x , x ′) = k1(x , x ′) + k2(x , x ′)

It acts like a OR operator if one of them is high it will high:
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Combining kernels: Product

We can also combine kernels by summing them. Look that it also defines
a semidefinite positive matrix!

k(x , x ′) = k1(x , x ′)× k2(x , x ′)

It acts like an AND operator both of them must be high for high values:
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Combining kernels: Product

We can also combine kernels by summing them. Look that it also defines
a semidefinite positive matrix!

k(x , x ′) = k1(x , x ′)× k2(x , x ′)

It acts like an AND operator both of them must be high for high values:
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Section 3

Bayesian inference
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Problem to solve

We have observed the following data (x1, y1), . . . , (xn, yn).

Let X = (x1, . . . , xn)T and y = (y1, . . . , yn)T

We model the regression with an unknown function corrupted by
gaussian noise:

y = f(X) + ε, ε ∼ N (0, σ2I) (5)

Once we learn this function we can infer the distribution on unseen
data:

p(y∗|y,X,X∗) =

∫
p(y∗|f∗)p(f∗|f)p(f|y)dfdf∗ (6)

So we want to calculate the distribution of p(f|y) and then the
distribution of p(y∗|y,X,X∗). For calculating these posterior
distributions we use the Bayes’s Rule.
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Bayes’s Rule explained

Bayes’s Rule

p(f|y) =
p(y|f)p(f)

p(y)
(7)

p(f|y) is the posterior distribution. That is the distribution of f
knowing that we have observed y.

p(y|f) is the likelihood. How probable is the seen data for a value of
the latent function f.

p(f) is the prior distribution. It is the distribution of f before we have
seen anything. This distribution imposes prior knowledge or properties
to the desired posterior distribution. It acts like a regularizer.

p(y) is the evidence. This is how probable is our observation.
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Section 4

Gaussian Processes for regression
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Regression problem with GP prior

We have the observed the following data (x1, y1), . . . , (xn, yn).

Let X = (x1, . . . , xn)T and y = (y1, . . . , yn)T

We model the regression with an unknown function corrupted by
gaussian noise:

y = f(X) + ε, ε ∼ N (0, σ2I) (8)

We can impose that the latent function f follows a GP prior, i.e.,
f ∼ GP(0, k(·, ·)).

The joint distribution is:

p(y, f) = p(y|f)︸ ︷︷ ︸
likelihood

p(f|X)︸ ︷︷ ︸
GPprior

(9)

Likelihood Gaussian: p(y|f) ∼ N
(
f, σ2I

)
Gaussian prior: p(f|X) ∼ N (0,K (X,X))

35 / 44



Noise-free predictions

We have observed the following noise-free data (x1, f1), . . . , (xn, fn).

If we have unseen values X∗, which are the values of the latent
function f∗?

We know that f and f∗ follows jointly the following gaussian
distribution because of the GP prior:[

f
f∗

]
∼ N

(
0,

[
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
(10)

Using the rules of conditioning in a gaussian multivariate distribution
we can calculate the posterior distribution:

p(f∗|X∗,X, f) ∼ N (µ∗,Σ∗)

µ∗ = K (X∗,X)K (X,X)−1f

Σ∗ = K (X∗,X∗)− K (X∗,X)K (X,X)−1K (X,X∗)

(11)
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Noisy predictions

We have the observed following noisy data (x1, y1), . . . , (xn, yn).

If we have unseen values X∗, which are the values of the latent
function y∗?

Note that p(y|X) =
∫
p(y|f)p(f|X)df = N (0,K (X,X) + σ2I).

We know that y and f∗ follows jointly the following gaussian
distribution because of the GP prior:[

y
y∗

]
∼ N

(
0,

[
K (X,X) + σ2I K (X,X∗)
K (X∗,X) K (X∗,X∗) + σ2I

])
. (12)

Using the rules of conditioning in a gaussian multivariate distribution
we can calculate the posterior distribution:

p(y∗|X∗,X, y) ∼ N (µ∗,Σ∗)

µ∗ = K (X∗,X)
(
K (X,X) + σ2I

)−1
y

Σ∗ = K (X∗,X∗) + σ2I− K (X∗,X)
(
K (X,X) + σ2I

)−1
K (X,X∗)

(13)
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Marginal likelihood

We want to compute marginal likelihood of the model, i.e., how
probable is the observation of the model given the data.

The marginal likelihood of the model is given by:

log p(y|X) = logN
(
y|0,K (X,X) + σ2I

)
(14)

=− 1

2
yT
(
K (X,X) + σ2I

)−1
y (15)

− 1

2
log
∣∣K (X,X) + σ2I

∣∣ (16)

− n

2
log(2π) (17)

The parameters of the kernel are computed by maximizing the
marginal likelihood. Notice that K (X,X) depends on the chosen
kernel and its hyperparameters.
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Example of the RBF kernel for regression

0.0 0.2 0.4 0.6 0.8 1.0
60

40

20

0

20

40

60

l = 0.1    2
kernel = 1000    2

noise=0.01

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
l = 0.1    2

kernel = 10    2
noise=0.01

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7
l = 0.05    2

kernel = 10    2
noise=0.01

(c)

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5
l = 1    2

kernel = 10    2
noise=0.01

(d) 39 / 44



Example of the RBF kernel for regression
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Example of the RBF kernel for regression

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7
Estimated parameters

41 / 44



Section 5

Conclusions
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Conclusions

Gaussian processes are amazing. We were doing bayesian linear
regression with infinite basis functions!!

Gaussian processes are useful when:

little data is provided.
we know prior information about data.
we desire uncertainty in the predictions.

Main drawbacks:

Scalability. It is O(n3). This is solved by using Sparse Gaussian
Processes.
Inference. Although inference is easy in the regression case is more
difficult with non-gaussian likelihood, e.g., in classification. The state
of the art is the variational inference and the MCMC.
Engineering of the kernel. Deep Gaussian Processes offer much more
complex model without engineering complex kernels.
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Useful Resources

David Duvenaud. Kernel Cookbook.
https://www.cs.toronto.edu/~duvenaud/cookbook/

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for machine learning. The MIT Press. 2006.
http://www.gaussianprocess.org/gpml/.

GPflow: Gaussian processes in TensorFlow.
https://gpflow.readthedocs.io/en/latest/index.html
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